C++数据结构之哈希表的实现 |
||||||||||||
+ 目录
哈希表概念二叉搜索树具有对数时间的表现,但这样的表现建立在一个假设上:输入的数据有足够的随机性。哈希表又名散列表,在插入、删除、搜索等操作上具有「常数平均时间」的表现,而且这种表现是以统计为基础,不需依赖输入元素的随机性。 听起来似乎不可能,倒也不是,例如: 假设所有元素都是 8-bits 的正整数,范围 0~255,那么简单得使用一个数组就可以满足上述要求。首先配置一个数组 Q,拥有 256 个元素,索引号码 0~255,初始值全部为 0。每一个元素值代表相应的元素的出现次数。如果插入元素 i,就执行 Q[i]++,如果删除元素 i,就执行 Q[i]--,如果查找元素 i,就看 Q[i] 是否为 0。
这个方法有两个很严重的问题。
散列函数如何避免使用一个太大的数组,以及如何将字符串转化为数组的索引呢?一种常见的方法就是使用某种映射函数,将某一元素映射为一个「大小可接受的索引」,这样的函数称为散列函数。 散列函数应有以下特性:
直接定址法取关键字的某个线性函数为散列地址:Hash(Key)=A∗Key+B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况 使用场景:数据范围比较集中的情况
除留余数法设散列表的索引个数为 m,取一个不大于 m,但最接近 m 的质数 p 最为除数,按照散列函数:Hash(Key)=key,将关键字转化为哈希地址
平方取中法假设关键字为 1230,它的平方是 1512900,取中间的 3 位 129 作为哈希地址; 再比如关键字为 321,它的平方是 103041,取中间的 3 位 304(或 30)作为哈希地址。
哈希冲突使用散列函数会带来一个问题:可能有不同的元素被映射到相同的位置。这无法避免,因为元素个数大于数组的容量,这便是「哈希冲突」。解决冲突问题的方法有很有,包括线性探测、二次探测、开散列等。
线性探测当散列函数计算出某个元素的插入位置,而该位置上已有其他元素了。最简单的方法就是向下一一寻找(到达尾端,就从头开始找),直到找到一个可用位置。 进行元素搜索时同理,如果散列函数计算出来的位置上的元素值与目标不符,就向下一一寻找,直到找到目标值或遇到空。 至于元素的删除,必须采用伪删除,即只标记删除记号,实际删除操作在哈希表重新整理时再进行。这是因为哈希表中的每一个元素不仅表示它自己,也影响到其他元素的位置。
从上述插入过程我们可以看出,当哈希表中元素变多时,发生冲突的概率也变大了。由此,我们引出哈希表一个重要概念:负载因子。 负载因子定义为:Q = 表中元素个数 / 哈希表的长度
因此,控制负载因子是个非常重要的事。对于开放定址法(发生了冲突,就找下一个可用位置),负载因子应控制在 0.7~0.8 以下。超过 0.8,查找时的 CPU 缓存不命中按照指数曲线上升。
二次探测线性探测的缺陷是产生冲突的数据会堆在一起,这与其找下一个空位置的方式有关,它找空位置的方式是挨着往后逐个去找。二次探测主要用来解决数据堆积的问题,其命名由来是因为解决碰撞问题的方程式F(i)=i2是个二次方程式。 更具体地说,如果散列函数计算出新元素的位置为 H,而该位置实际已被使用,那么将尝试H+12,H+22,H+32,...,H+i2,而不是像线性探测那样依次尝试H+1,H+2,H+3,...,H+i。
大量实验表明:当表格大小为质数,而且保持负载因子在 0.5 以下(超过 0.5 就重新配置),那么就可以确定每插入一个新元素所需要的探测次数不超过 2。
链地址法这种方法是在每一个表格元素中维护一个链表,在呢个链表上执行元素的插入、查询、删除等操作。这时表格内的每个单元不再只有一个节点,而可能有多个节点。
节点的定义:
?
哈希表的实现
闭散列接口总览
?
节点的结构 因为在闭散列的哈希表中的每一个元素不仅表示它自己,也影响到其他元素的位置。所以要使用伪删除,我们使用一个变量来表示。
?
哈希表的节点结构,不仅存储数据,还存储状态。
?
查找 查找的思路比较简单:
?
在上面代码的查找过程中,加了句用于判断是否重复查找的代码。理论上上述代码不会出现所有的位置都有数据,查找不存在的数据陷入死循环的情况,因为哈希表会扩容,闭散列下负载因子不会到 1。 但假如,我们插入了 5 个数据,又删除了它们,之后又插入了 5 个数据,将 10 个初始位置都变为非 EMPTY。此时我们查找的值不存在的话,是会陷入死循环的。 插入 插入的过程稍微复杂一些: 1.首先检查待插入的 key 值是否存在 2.其次需要检查是否需要扩容 3.使用线性探测方式将节点插入
?
|